
ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

MPEG-4 Video Bitstream Structure Analysis and

Its Parsing Architecture Design
Hao-Chieh Chang, Yung-Chi Chang, *Yuan-Bin Tsai, *Chih-Peng Fan and Liang-Gee Chen

DSP/IC Design Lab, Department of Electrical Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

*N 100, Computer and Communications Research Laboratories (CCL)
Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan, R.O.C.

ABSTRACT
In this paper, the hardware-oriented structure analysis and an
efficient and flexible bitstream parser for MPEG-4 video are
presented. The analysis of bitstream structure explores processing
requirement and design constraint for bitstream-level processing.
The proposed architecture is basically RAM-based that can be
reconfigured for various applications. For high bitrate as about 40
Mbit/s: it needs only about 19 MIPS to parse the bitstream. The
impact of the proposed architecture on MPEG-4 video is to
enhance and extend the processing for bit domain translation and
related real time applications.

1. INTRODUCTION

Compression of video data is essential for cost-effective
transmission under limited communication channels and storage
media, Hybrid video coding is a promising technique to minimize
the required bitrate and has been widely adopted in many
international standards, such as H.261 [2]: H.263 [3]: MPEG-1 [4]:
MPEG-2 [5] : and MPEG-4. In real case: in addition to these coded
data, several header information have to be inserted to transmit a
complete bitstream. Thus: to correctly extract header information
and coded data from various bitstream structures: a parsing
processor is required for most prevailing multimedia terminals.
Generally speaking: the implementations of bitstream parser can be
divided into two classes. The most adopted implementation is the
dedicated header decoder based on FSM [6][7]. The other one is
RISC-core based architecture [8] . Dedicated architectures can
achieve higher performance and more cost-effective with the
penalty of lacking flexibility. On the other hand, RISC-core based
architectures can provide better flexibility.

In previous designs for MPEG-2 or other video coding systems, a
dedicated header decoder is usually adopted as front-end decoder.
In MPEG-4: however, more complicated and flexible bitstream
structure is required so as to provide more functionality. Such
requirements lead the front-end decoder to be capable of flexible
decoding. Although a RISC processor could provide such
capability, it will lead to the performance degradation due to its
inefficiency for bit-level processing. This motivates the research
for flexible and efficient parser architecture design.

2. BITSTREAM STRUCTURE ANALYSIS
ON MPEG-4 VIDEO

A bitstream is composed of several codewords, which represent
some information or symbols while delivering multimedia data.

Some codewords are fixed-length: while others are generated by
entropy coding that will generate variable-length codes. Therefore,
it is necessary to perform VLC table-lookup while encoding or
decoding a bitstream. Additionally, to access and handle a
bitstream, several functions are required to perform bit-level
processing as listed in the following:

1. FillBuffer: To read a piece of the bitstream from the bitstream
file to the bitstream buffer.

2. ShowBits: To see the next several bits after the current positiqn
of the bitstream pointer without advancing the pointer. It returns
several bits of the bitstream right aligned.

3. GetBits: To read the next several bits of the bitstream and
advances the bitstream read pointer.

4. FlushBits: To advance the bitstream read pointer for several bits
and call the function "FillBuffer" to reload the bitstream buffer
whenever necessary.

5. ByteAlign: To advance the bitstream read pointer until the
number of bits left in the buffer is a multiple of 8.

6 . ShowBitsByteAlign: To see the next bytealigned several bits in
the bitstream without advancing the bitstream read pointer.

7. PutBits: To append a stream of bits to the bitstream.

Among them, both the functions GetBits and ByteAlign are totally
composed of the functions ShowBits and FlushBits. These
functions all can be accomplished by bit-wise shift and or.

In bitstream-level, the codewords in a bitstream are generated and
extracted sequentially. In the process of encoding or decoding a
bitstream, the codeword to be inserted or to be extracted next is
unknown until current or previous symbol, or current position of
the bitstream pointer is known. Due to this characteristic, some
decisions must be made according to current or previous symbol,
or current position of the bitstream pointer so as to perform
encoding or decoding. So: condition checking is a necessary task to
decide next codeword to be inserted or to be extracted and its.bit-
length.

From the above two paragraphs, the basic operations require? to
carry out bitstream processing are VLC table-lookup to percorm
VLD, bit-wise shift and or to access and handle bitstream,.and
comparisons to perform condition checking. However: there are
some problems while processing bitstream because of the
characteristic of bitstream. The bit-length of the coming codeword
is unknown in most cases, especially for VLC codes. The number
of bits processed at the same time is usually limited to 1 or 2 bits.

0-7803-5482-6/99/$10.00 02000 IEEE

11- 184

Therefore: it is difficult for a bitstream-processing module to
achieve high throughput.

The bitstream structure is the description about the relationship
among codewords and how to concatenate separate codewords to
form a complete bitstream. In MPEG-2 video, its structure is
hierarchy and top-down with sequence, group of picture, picture,
slice, macroblock, and block layer. For MPEG-4 video, a video
scene consists of one or several visual objects, which contain one
or more video object layers. One instance of a video object layer at
a given time is considered as a video object plane. In a video object
plane are some video packets, which are composed of data of
several macroblocks. In addition to motion and texture data as in
MPEG-2 video, shape information of a macroblock is also
provided. The order how these data are concatenated in a video
packet can be in the order of macroblock or partitioning different
types of data, according to the requirement of error resilience.

The bitstream syntax is used to describe the bitstream structure,
including codeword descriptions, and some decision-making
functions. From the syntax defined in MPEG-4 video standard, the
parsing instruction set is defined in order to accomplish bitstream
parsing by executing the parsing instructions sequentially. The
parsing instructions, each one corresponding to one group, and
their parameters are shown in Table 2.

3. PROPOSED ARCHITECTURE AND
DESIGN EXAMPLE

Based on the analysis of bitstream structure, only seven types of
parsing instructions are sufficient to decode MPEG-4 video
bitstream as shown in Table 1. The instruction FLD and VLD are
used to extract codewords of different code length in the bitstream.
The instruction FOR and FNC determine which parsing instruction
should be fetched at next cycle. FNC changes the layer to be
processed in the bitstream structure such that all levels of bitstream
can be parsed. Both the instruction BRP and BRN are used to
decide the execution order of parsing instructions according to the
results of comparison operation. The difference between BRN and
BRP is that BRP reads data from data memory to perform
comparison while BRN doesn’t. The instruction CMP performs
some basic operations such as addition, subtraction, and shift on
previously decoded data.

In order to accomplish these tasks, the proposed core architecture is
basically composed of three major units: functional unit (FU):
memory management unit (MMU), and instruction decoder
(INSTDEC). The FU performs codeword decoding and arithmetic
and logic operations required by BRP, BNP, and CMP. MMU
comprises several memory modules for storing the parsing
instructions and decoded data. Additionally, an address generator
(AG) is also included in MMU to generate addresses and control
signals for memory modules. INSTDEC decode the parsing
instruction and generate corresponding data for FU or AG. The
proposed bitstream parsing processor architecture is shown as
Figure 1.

Management Unit

Memory

INSTDEC

I I - I I I

Functional
Unit

sequencer
-%--

output J control bitstream I
Figure 1. Architecture for MPEG-4 video bitstream
parsing.

The decoding flow is described as follows. Bitstream data is fed
into a sequencer, To support bit-level processing, instruction FLD
is used to extract the output data of sequencer according to data
length denoted in parsing instruction. To support VLC decoding,
the instruction VLD is used to perform VLC table-lookup. The
decoded symbol of FLD or VLD is written into data memory
whose address is generated by address generator. The decoded data,
which are required by motion. texture or shape decoder in latter
stage, can be the outputs of the proposed parsing processor by
controlling the AG. To support condition checking, the instruction
BRN or BRP is used to check the branch conditions denoted in the
instruction field and the comparison result is sent to AG to
determine next parsing sequence. When the instruction FOR or
FNC is used, AG is controlled to generate correct address for
fetching next parsing instruction. Therefore, parsing bitstream in all
levels is supported. The instruction CMP performs operation on
previously decoded symbol in FU and restores it in data memory.

The superiority of the proposed architecture is described. For an
example adopted from MPEG-4 video standard:

I if (interlaced && fieldgrediction)

J motion-vector(“forward”) I
The first line performs two condition-checking tasks based on two
previously decoded symbols. One of the tasks is to compare the
symbol “interlaced” with the immediate value ‘‘1”: and the other
one is to compare the symbol “fieldgrediction” with the
immediate value “1”. Afterwards, the final result will be true only
when both conditions are met. The corresponding first parsing
instruction is:

BRP (”if‘: 2: 1: “interlaced” “fieldgrediction”;
&“; “No“) !m 1 1 1 to 1 to. Mimmediatett, t #=V 8(=11 tm

The execution flow and status of the blocks used in this example
are described in Table 3. As the instruction is decoded, the
previously decoded data to be compared will be read out from data
memory at the first and second cycles. The two branch conditions

11-185

are checked at the second and third clock cycles after the
corresponding data is read from data memory. In the fourth clock
cycle, the final result will be calculated and sent to AG to generate
next address of parsing instruction. No deep pipelines are
embedded in the proposed architecture. Consequently, there is no
memory access latency, which makes it possible to access data and
perform comparison simultaneously. Additionally, an extra parsing
instruction to indicate ending of a branch or a loop is not required.
As long as the address generator detects the ending of a branch or a
loop, the correct address will be generated to read next parsing
instruction.

4. PERFORMANCE EVALUATION

?I*-
24.5169 19.2668 23.6464

BRN 27.3439 28.3956 29.1476

FNC 1 3.4862 2.905 3.5294

FOR 0.8794 0.5344 0.8965

10.8383

28.2957

Table 1. Hit count percentage occupied by each kind of
parsing instruction.

Thus, it is estimated that the operation ”Fixed-length decode“ will
occupy 34%; “Variable-length decode” will occupy 1 1%: “Branch”
will occupy 50% of complete bitstream parsing, and the rest 4% is
left for other kinds of operations. In MPEG-4 video Main Profile
Level 4: the maximum bitrate can reach 38.4 Mbitls [I]. Under
such circumstance, the resulting required MIPS of each
architecture is shown in Figure 2. It’s clear that a general-purpose
RISC core would spend about 160 MIPS: and the architecture in [SI
would spend about 40 MIPS. However, the proposed architecture
only takes about 19 MIPS. Obviously, the proposed architecture
achieves better performance than RISC-based architecture.

5. FUTUREWORK

The analysis of bitstream structure of MPEG-4 video explores
processing requirement and design constraint for bit-level
processing. The analysis is suitable for previously developed
standards, such as MPEG-1 [4] and MPEG-2 [5] : whose bitstream
syntax is a subset of MPEG-4’s. The proposed architecture is
basically memory-based that can be reconfigured for various
applications. Although it is for MPEG-4 video application, it can
be extended to a universal bitstream parser able to parse bitstream
of different standards based on the analysis.

6. REFERENCES
ISOIIEC JTClISC29IWGl I . N2502a, Generic Coding of
Audio- Visual Objects: Visual 14496-2, Final Drq7 of
International Standard, Atlantic City, Dec. 1998.
CCITT Study Group XV: TD35. “Draft review of
recommendation H.261 video codec for audiovisual services
at p 6 4 kbits/s,” Image Communication, pp.221-239, August
1990.
“Video coding for narrow telecommunication channels i d < 64
kbitds,” Draft /TU-T Recommendation H.263, July 1995.
D. L. Gall. “MPEG: a video compression standard for
multimedia applications,” Communications of the ACh< Vol.
34; No. 4: pp.46-58: April 1991.
ISO/IEC/JTCl/SC29/WGll Draft CD 13818-2
Recommendation H.262 Committee Draft.
J. H. Li, N. Ling, “Architecture and bus-arbitration schemes
for MPEG-2 video decoder,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 9: No. 5, pp.727-736,
August 1999.
T. Onoye, T. Masaki, Y. Morimoto, Y. Sato, I. Shirakawa,
“HDTV level MPEG2 video decoder VLSI,” pp.727-736,
TENCONPS.
M. Berekovic, G. Meyer, Y. Guo: P. Pirsch, “A multimedia
RISC core for efficient bitstream parsing and VLD,” SPIE‘98.
J. L. Hennessy, D. A. Patterson, Computer Architecture: A
Quantitative Approach, second edition, Morgan Kaufmann
Publishers, Inc., 1996.

11-186

Table 2. Parsing instruction set

Table 3. Execution flow and status of the blocks used in the example

Table 4. Performance comparison in clock cycles

DLX [9]

Proposed

Fixed-length Variable-length
decode decode Branch Others

))) ___...--.-. __..-- 161.7 MIPS

_....’ ...-. __..-.-
I .2 ._.- _./

_..I. ___.-
*..‘e .__... ----

i : : ..
M. Berekovic [8] 27.7 39.3 MIPS

.. ,. ..
5.3i ; I , 5.1 ,./‘ 1.2

5.3 1.7 11.2 0.6

Figure 2. Performance comparison in MIPS

11-187

